Atlantic Basin Seasonal Hurricane Outlook for 2025 and Longer-Term Trends

Phil Klotzbach, Department of Atmospheric Science, Colorado State University

2025 FORECAST AS OF 3 APRIL 2025

Forecast Parameter	CSU Forecast	1991–2020 Average
Named Storms (NS)	17	14.4
Named Storm Days (NSD)	85	69.4
Hurricanes (H)	9	7.2
Hurricane Days (HD)	35	27.0
Major Hurricanes (MH)	4	3.2
Major Hurricane Days (MHD)	9	7.4
Accumulated Cyclone Energy (ACE)	155	123
ACE West of 60°W	93	73
Net Tropical Cyclone Activity (NTC)	165	135

Seasonal Forecasting is more than this!

The Essence of Seasonal Forecasting

"It's tough to make predictions, especially about the future."

HOWEVER

"You can see a lot by looking"

Yogi Berra

June–July Sea Surface Temperatures: Busy Hurricane Seasons minus Quiet Hurricane Seasons

What is El Niño/La Niña?

Columbia Univ

ENSO's Impact on Tropical Circulation

equator 60° E 120° E 180° 120° W 60° W

La Niña

El Niño

climate.gov

El Niño/La Niña Relationship with Vertical Wind Shear

CSU Long-Term Seasonal Hurricane Forecast Track Record

Early August CSU Predicted vs. Observed Hurricane Forecast (1984–2024)

Current Sea Surface Temperature Anomalies

Currently ENSO Neutral Conditions

NOAA Coral Reef Watch Daily 5km SST Anomalies (v3.1) 12 May 2025

Eastern and Central Tropical Pacific Subsurface Anomalously Warming

Strong Winds Across the Central Pacific Likely to Keep El Niño at Bay

Climate Model Predictions for ENSO

ECMWF Model Predictions for ENSO

Official NOAA Forecast Favors ENSO Neutral for Aug–Oct

Official NOAA CPC ENSO Probabilities (issued May 2025)

Current North Atlantic Sea Surface Temperature Anomalies

Thankfully Not as Warm as Last Year at This Time!

Atlantic has Cooled off Substantially since Late January

Strong Winds Blowing Across Tropical Atlantic (February – Early May)

May Atlantic SST Rank Correlation with Atlantic ACE

NMME Forecasting High Probability of Warm Atlantic for September

ECMWF Forecasting High Probability of Warm Atlantic for Aug – Oct

ECMWF Forecasting Relatively Strong Low-Level Winds Coming Up

April Statistical Model Forecast

Statistical Model Hindcast Skill

CSU April Statistical Model Hindcasts vs. Continental US Landfalling Hurricanes

CSU April Stats Model Hindcasts vs. Continental US Hurricane Normalized Damage

Statistical/Dynamical Model Forecast – Forecasting August Values

Statistical/Dynamical Model Hindcast Skill (4 Models)

August–October Sea Surface Temperature Anomalies in Analog Years

BEST ANALOG YEARS FOR 2025 (APRIL FORECAST)

	NS	NSD	Н	HD	MH	MHD	ACE	NTC	
1996	13	79.00	9	45.00	6	13.00	166	192	
1999	12	78.50	8	41.00	5	14.25	177	182	
2006	10	58.00	5	21.25	2	2.00	83	87	
2008	16	88.25	8	30.50	5	7.50	146	162	
2011	19	89.75	7	26.00	4	4.50	126	145	
2017	17	93.00	10	51.75	6	19.25	225	232	
MEAN	14.5	81.1	7.8	35.9	4.7	10.1	154	167	
2025 Forecast	17	85	9	35	4	9	155	165	

2025 Seasonal Hurricane Forecast Model Uncertainty				
Forecast Parameter	2025 Forecast	Uncertainty Range (~70% of Forecasts Fall within Range)		
Named Storms (NS)	17	14–20		
Named Storm Days (NSD)	85	62–109		
Hurricanes (H)	9	7–12		
Hurricane Days (HD)	35	22–50		
Major Hurricanes (MH)	4	2–6		
Major Hurricane Days (MHD)	9	6–14		
Accumulated Cyclone Energy (ACE)	155	102–215		
ACE West of 60°W	93	57–136		
Net Tropical Cyclone Activity (NTC)	165	113–222		

Percentage of Basinwide ACE West of 60°W vs. ENSO Phase

Count all named storms, hurricanes and major hurricanes within 50 miles of each county/parish (1880–2020)

Example: All Hurricanes within 50 miles of Plymouth County, MA

https://coast.noaa.gov/hurricanes/

2025 Probabilities (1880–2020 Probabilities in Parentheses)

State	>=1 Hurricane Within 50 Miles	>=1 Major Hurricane Within 50 Miles
Florida	65% (56%)	35% (29%)
Louisiana	46% (38%)	18% (14%)
Massachusetts	18% (14%)	4% (3%)
Mississippi	35% (28%)	9% (8%)
New York	12% (9%)	3% (2%)
North Carolina	46% (38%)	9% (8%)
Texas	44% (36%)	19% (16%)

2025 Atlantic Seasonal Hurricane Forecast Schedule

Date	3 April	11 June	9 July	6 Aug
Seasonal Forecast	X	X	X	X

Seasonal Hurricane Predictions Platform

Seasonalhurricanepredictions.org Visualization – 2025 Hurricane Season

HURRICANE FORECAST 2025

Trends in Global Tropical Cyclone Activity: 1990–2021 Published in 2022 in Geophysical Research Letters Updated with Data Through 2024

> Co-authors: Kim Wood*, Carl Schreck, Steve Bowen, Christina Patricola, Michael Bell

Global Named Storms (>=39 mph) (1990–2024)

Atlantic Named Storms (<=2 Days) (1990–2024)

Atlantic Hurricane Observational Network Improvements

Chris Landsea (NHC)

Global Hurricanes/Typhoons (1990–2024)

Trend Towards More La Niña-Like Environment since 1990

Category 4-5 Hurricanes (1990–2024)

Global Cat. 4-5 Hurricane Percentage (>=130 mph winds) (1990–2024)

What About Rapid Intensification? Hurricane Otis (2023)

Rapidly Intensifying Hurricanes (>=35 mph 24 hr⁻¹) (1990–2024)

Super Rapidly Intensifying Hurricanes (>=60 mph 24 hr⁻¹) (1990–2024)

Continental US Hurricane Losses (2024 USD) – Adjusted for Inflation

1926 Great Miami Hurricane (145 mph winds, 930 hPa) – Category 4

Miami-Dade County Population Explosion since 1926

Miami-Dade County Population: ~2.7 Million

Miami-Dade County Population: ~100,000

1926 2025

1926 Great Miami Hurricane - >\$200 Billion Economic Damage in 2024

Weinkle, J. et al. (2018). Normalized hurricane damage in the continental United States 1900–2017. *Nature Sustainability* 1(12):808-813.

Klotzbach, P. J., Bowen, S. G., Pielke, R., Jr., & Bell, M. M. (2018). Continental U.S. Hurricane Landfall Frequency and Associated Damage: Observations and Future Risks, *Bulletin of the American Meteorological Society*, *99*(7), 1359-1376.

US Gulf/East Coast Population Change Since 1900

US Gulf/East Coast Housing Unit Change Since 1900

Steve Bowen (Gallagher Re)

Normalized Continental US Hurricane Losses (1900–2024)

Observed Continental US Landfalling Hurricane Activity (1900–2024)

Observed Continental US Landfalling Major Hurricane Activity (1900–2024)

Observed Sea Level Change (1880–2024)

Global Average Sea Level Change (Relative to 1880)

globalchange.gov

Projected Increase in Heavy Rainfall Events

Emanuel et al. (2017)

Late 21st Century Projections of Global Hurricane Intensity

Knutson et al. (2015)

Tropical Cyclone Trend Summary

- Global hurricane frequency has trended downward, likely due to long-term trend towards La Niña
- High-end rapid intensification has trended upward, likely due to increasing tropical sea surface temperatures
- No long-term trend in continental US landfalling hurricane frequency
- Inflation-adjusted damage for continental US landfalling hurricanes has skyrocketed, mostly driven by growth in population and wealth along the coastline

Arago's Admonition

"Never, no matter what may be the progress of science, will honest scientific men (or women) who have regard for their reputations venture to predict the weather!"

Contact Info

- Phil Klotzbach
- Email: philk@atmos.colostate.edu
- Web: tropical.colostate.edu
- Twitter (X): @philklotzbach

